Model Context Protocol (MCP): The Universal Standard for AI Tool Integration
on Ai, Mcp, Claude, Integration, Api, Developer tools
Remember when every device needed a different cable? Then USB came along. Model Context Protocol (MCP) is doing the same thing for AI tools—creating a universal way for AI models to interact with external systems.
Photo by NASA on Unsplash
What is MCP?
Model Context Protocol is an open standard that defines how AI models communicate with external tools, data sources, and services. Instead of building custom integrations for every AI provider, you build one MCP server and it works everywhere.
┌─────────────┐ MCP ┌─────────────┐
│ Claude │◄────────────►│ Your Tool │
└─────────────┘ └─────────────┘
│ │
│ MCP │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ GPT-4 │ │ Database │
└─────────────┘ └─────────────┘
Why MCP Matters
Before MCP, integrating AI with your systems meant:
- Writing custom code for each AI provider
- Managing multiple authentication schemes
- Handling different context formats
- Maintaining separate tooling definitions
With MCP:
- Write one integration
- Works with any MCP-compatible AI
- Standardized authentication
- Universal tool definitions
Building Your First MCP Server
Let’s build a simple MCP server that provides weather data:
// weather-mcp-server.ts
import { MCPServer, Tool, Resource } from '@modelcontextprotocol/sdk';
const server = new MCPServer({
name: 'weather-service',
version: '1.0.0',
});
// Define a tool
server.addTool({
name: 'get_weather',
description: 'Get current weather for a location',
inputSchema: {
type: 'object',
properties: {
city: { type: 'string', description: 'City name' },
units: {
type: 'string',
enum: ['celsius', 'fahrenheit'],
default: 'celsius'
}
},
required: ['city']
},
handler: async ({ city, units }) => {
const weather = await fetchWeather(city, units);
return {
temperature: weather.temp,
conditions: weather.conditions,
humidity: weather.humidity
};
}
});
// Define a resource (data the AI can read)
server.addResource({
uri: 'weather://forecast/weekly',
name: 'Weekly Forecast',
description: '7-day weather forecast',
mimeType: 'application/json',
handler: async () => {
return await getWeeklyForecast();
}
});
server.start();
MCP Architecture Deep Dive
MCP defines three core primitives:
1. Tools
Functions the AI can call to take actions:
interface Tool {
name: string;
description: string;
inputSchema: JSONSchema;
handler: (input: any) => Promise<any>;
}
2. Resources
Data sources the AI can read:
interface Resource {
uri: string;
name: string;
description: string;
mimeType: string;
handler: () => Promise<string | Buffer>;
}
3. Prompts
Pre-defined prompt templates:
interface Prompt {
name: string;
description: string;
arguments: PromptArgument[];
template: string;
}
Photo by Markus Spiske on Unsplash
Real-World MCP Implementation
Here’s a production-ready MCP server for a database:
// database-mcp-server.ts
import { MCPServer } from '@modelcontextprotocol/sdk';
import { Pool } from 'pg';
const pool = new Pool({ connectionString: process.env.DATABASE_URL });
const server = new MCPServer({
name: 'database-service',
version: '1.0.0',
capabilities: {
tools: true,
resources: true,
prompts: true
}
});
// Query tool with safety checks
server.addTool({
name: 'query_database',
description: 'Execute a read-only SQL query',
inputSchema: {
type: 'object',
properties: {
query: {
type: 'string',
description: 'SQL SELECT query'
},
limit: {
type: 'number',
default: 100,
maximum: 1000
}
},
required: ['query']
},
handler: async ({ query, limit = 100 }) => {
// Safety: Only allow SELECT queries
if (!query.trim().toLowerCase().startsWith('select')) {
throw new Error('Only SELECT queries are allowed');
}
// Add limit if not present
const limitedQuery = query.includes('limit')
? query
: `${query} LIMIT ${limit}`;
const result = await pool.query(limitedQuery);
return {
rows: result.rows,
rowCount: result.rowCount,
fields: result.fields.map(f => f.name)
};
}
});
// Schema resource
server.addResource({
uri: 'database://schema',
name: 'Database Schema',
description: 'Current database table schemas',
mimeType: 'application/json',
handler: async () => {
const result = await pool.query(`
SELECT table_name, column_name, data_type
FROM information_schema.columns
WHERE table_schema = 'public'
ORDER BY table_name, ordinal_position
`);
return JSON.stringify(result.rows, null, 2);
}
});
server.start({ transport: 'stdio' });
Connecting MCP to Claude
Claude Desktop supports MCP natively. Configure it in claude_desktop_config.json:
{
"mcpServers": {
"weather": {
"command": "node",
"args": ["./weather-mcp-server.js"],
"env": {
"WEATHER_API_KEY": "your-key"
}
},
"database": {
"command": "node",
"args": ["./database-mcp-server.js"],
"env": {
"DATABASE_URL": "postgresql://..."
}
}
}
}
MCP vs Traditional APIs
| Feature | Traditional API | MCP |
|---|---|---|
| AI Integration | Custom per provider | Universal |
| Discovery | Manual documentation | Automatic |
| Schema | OpenAPI/GraphQL | JSONSchema |
| Streaming | Varies | Built-in |
| Authentication | Custom | Standardized |
Security Considerations
MCP servers handle AI-initiated requests. Security is critical:
// Security best practices
server.addTool({
name: 'sensitive_operation',
// 1. Rate limiting
rateLimit: { requests: 10, window: '1m' },
// 2. Input validation
inputSchema: {
type: 'object',
properties: {
userId: {
type: 'string',
pattern: '^[a-zA-Z0-9-]+$' // Strict pattern
}
},
additionalProperties: false // Reject unknown fields
},
handler: async (input, context) => {
// 3. Check permissions
if (!context.user.hasPermission('sensitive_op')) {
throw new Error('Unauthorized');
}
// 4. Audit logging
logger.info('Sensitive operation', {
user: context.user.id,
input
});
// 5. Sanitize output
return sanitize(await performOperation(input));
}
});
The MCP Ecosystem
The ecosystem is growing rapidly:
- Official SDKs: TypeScript, Python, Rust
- Community servers: GitHub, Slack, Notion, databases
- IDE plugins: VS Code, Cursor, JetBrains
- Cloud providers: AWS, GCP, Azure MCP connectors
Getting Started
- Install the SDK:
npm install @modelcontextprotocol/sdk Create a server (see examples above)
- Test locally:
npx @modelcontextprotocol/inspector ./your-server.js - Connect to Claude Desktop or your preferred AI client
Conclusion
MCP is the missing standard that makes AI integration practical. Instead of maintaining dozens of custom integrations, you maintain one MCP server. The AI ecosystem benefits from interoperability, and developers benefit from reduced complexity.
If you’re building AI-powered applications, MCP should be on your radar. It’s not just another protocol—it’s the foundation for how AI will interact with the world.
Building an MCP server? I’d love to see what you create. Share your projects!
이 글이 도움이 되셨다면 공감 및 광고 클릭을 부탁드립니다 :)
